Implicit Regularization of Bregman Proximal Point Algorithm and Mirror Descent on Separable Data

TMLR Paper1507 Authors

25 Aug 2023 (modified: 17 Sept 2024)Rejected by TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Bregman proximal point algorithm (BPPA) has witnessed emerging machine learning applications, yet its theoretical understanding has been largely unexplored. We study the computational properties of BPPA through learning linear classifiers with separable data, and demonstrate provable algorithmic regularization of BPPA. For any BPPA instantiated with a fixed Bregman divergence, we provide a lower bound of the margin obtained by BPPA with respect to an arbitrarily chosen norm. The obtained margin lower bound differs from the maximal margin by a multiplicative factor, which inversely depends on the condition number of the distance-generating function measured in the dual norm. We show that the dependence on the condition number is tight, thus demonstrating the importance of divergence in affecting the quality of the learned classifiers. We then extend our findings to mirror descent, for which we establish similar connections between the margin and Bregman divergence, together with a non-asymptotic analysis. Numerical experiments on both synthetic and real-world datasets are provided to support our theoretical findings. To the best of our knowledge, the aforementioned findings appear to be new in the literature of algorithmic regularization.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Bryon_Aragam1
Submission Number: 1507
Loading