UniTS: A Universal Time Series Analysis Framework with Self-supervised Representation LearningDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 28 Jan 2024CoRR 2023Readers: Everyone
Abstract: Machine learning has emerged as a powerful tool for time series analysis. Existing methods are usually customized for different analysis tasks and face challenges in tackling practical problems such as partial labeling and domain shift. To achieve universal analysis and address the aforementioned problems, we develop UniTS, a novel framework that incorporates self-supervised representation learning (or pre-training). The components of UniTS are designed using sklearn-like APIs to allow flexible extensions. We demonstrate how users can easily perform an analysis task using the user-friendly GUIs, and show the superior performance of UniTS over the traditional task-specific methods without self-supervised pre-training on five mainstream tasks and two practical settings.
0 Replies

Loading