FARSE-CNN: Fully Asynchronous, Recurrent and Sparse Event-Based CNN

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: deep learning architecture, neuromorphic camera, event-based camera
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Event cameras are neuromorphic image sensors that respond to per-pixel brightness changes, producing a stream of asynchronous and spatially sparse events. Currently, the most successful algorithms for event cameras convert batches of events into dense image-like representations that are synchronously processed by deep learning models of frame-based computer vision. These methods discard the inherent properties of events, leading to high latency and computational costs. Following a recent line of works, we propose a model for efficient asynchronous event processing that exploits sparsity. We design the Fully Asynchronous, Recurrent and Sparse Event-Based CNN (FARSE-CNN), a novel multi-layered architecture which combines the mechanisms of recurrent and convolutional neural networks. To build efficient deep networks, we propose compression modules that allow to learn hierarchical features both in space and time. We theoretically derive the complexity of all components in our architecture, and experimentally validate our method on tasks for object recognition, object detection and gesture recognition. FARSE-CNN achieves similar or better performance than state-of-the-art asynchronous methods, with low computational complexity and without relying on a fixed-length history of events.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5174
Loading