Complementary Learning System Based Intrinsic Reward in Reinforcement LearningDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 13 Nov 2023ICASSP 2023Readers: Everyone
Abstract: Deep reinforcement learning has achieved encouraging performance in many realms. However, one of its primary challenges is the sparsity of extrinsic rewards, which is still far from solved. Complementary learning system theory suggests that effective human learning relies on two complementary learning systems utilizing short-term and long-term memories. Inspired by the fact that humans evaluate curiosity by comparing current observations with historical information, we propose a novel intrinsic reward, namely CLS-IR, which aims to address the problems caused by sparse extrinsic rewards. Specifically, we train a self-supervised predictive model with short-term and long-term memories via exponential moving averages. We employ the information gain between the two memories as the intrinsic reward, which does not incur additional training costs but leads to better exploration. To investigate the effectiveness of CLS-IR, we conduct extensive experimental evaluations; the results demonstrate that CLS-IR can achieve state-of-the-art performance on Atari games and DeepMind Control Suite.
0 Replies

Loading