Generalizable Blood Pressure Estimation from Multi-Wavelength PPG Using Curriculum-Adversarial Learning

Published: 19 Aug 2025, Last Modified: 24 Sept 2025BSN 2025EveryoneRevisionsBibTeXCC BY 4.0
Confirmation: I have read and agree with the IEEE BSN 2025 conference submission's policy on behalf of myself and my co-authors.
Keywords: Blood pressure estimation, photoplethysmography (PPG), curriculum learning, domain-adversarial training, wearable health monitoring
Abstract: Accurate and generalizable blood pressure (BP) estimation is vital for the early detection and management of cardiovascular diseases. In this study, we enforce subject-level data splitting on a public multi-wavelength photoplethysmography (PPG) dataset and propose a generalizable BP estimation framework based on curriculum-adversarial learning. Our approach combines curriculum learning, which transitions from hypertension classification to BP regression, with domain-adversarial training that confuses subject identity to encourage the learning of subject-invariant features. Experiments show that multi-channel fusion consistently outperforms single-channel models. On the four-wavelength PPG dataset, our method achieves strong performance under strict subject-level splitting, with mean absolute errors (MAE) of 14.2mmHg for systolic blood pressure (SBP) and 6.4mmHg for diastolic blood pressure (DBP). Additionally, ablation studies validate the effectiveness of both the curriculum and adversarial components. These results highlight the potential of leveraging complementary information in multi-wavelength PPG and curriculum-adversarial strategies for accurate and robust BP estimation.
Track: 3. Signal processing, machine learning, deep learning, and decision-support algorithms for digital and computational health
NominateReviewer: Houman Homayoun, hhomayoun@ucdavis.edu Zequan Liang, zqliang@ucdavis.edu
Submission Number: 48
Loading