Abstract: Images captured in low light conditions usually suffer from poor visibility, a high amount of noise, and little information stored in the dark image, which has a negative impact on subsequent processing for outdoor computer vision applications. Presently, numerous deep learning based methods achieved superior performance with multi-exposure paired training data or additional information. However, obtaining multi-exposure data samples is a tedious task in real-time scenarios. To mitigate this challenge, we propose a zero reference based learnable wavelet approach without multi-exposure paired training data requirement for low-light image enhancement. Our proposed approach generates the low light image and learns to project an image into noise free similar looking image, then we enhance the image using retinex theory. Further, we have proposed learnable wavelet block to remove the hidden noise amplified while enhancement. We introduce Gaussian-based supervision to improve the smoothness of the image. Extensive experimental analysis on synthetic as well as real-world images, along with thorough ablation study demonstrate the effectiveness of our proposed method over the existing state-of-the-art methods for low-light image enhancement. The code is provided at https://github.com/vision-lab-sggsiet/Zero-Reference-based-Low-light-Enhancement-with-Wavelet-Optimization.
Loading