Revisiting Structured DropoutDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Abstract: Large neural networks are often overparameterised and prone to overfitting, Dropout is a widely used regularization technique to combat overfitting and improve model generalization. However, unstructured Dropout is not always effective for specific network architectures and this has led to the formation of multiple structured Dropout approaches to improve model performance and, sometimes, reduce the computational resources required for inferencing. In this work we revisit structured Dropout comparing different Dropout approaches on natural language processing and computer vision tasks for multiple state-of-the-art networks. Additionally, we devise an approach to structured Dropout we call \textbf{\emph{ProbDropBlock}} which drops contiguous blocks from feature maps with a probability given by the normalized feature salience values. We find that with a simple scheduling strategy the proposed approach to structured Dropout consistently improved model performance compared to baselines and other Dropout approaches on a diverse range of tasks and models. In particular, we show \textbf{\emph{ProbDropBlock}} improves RoBERTa finetuning on MNLI by $0.22\%$, and training of ResNet50 on ImageNet by $0.28\%$.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
Supplementary Material: zip
14 Replies

Loading