Leftover Lunch: Advantage-based Offline Reinforcement Learning for Language Models

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Reinforcement Learning, Natural Language Generation, Offline Policy Gradients
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Advantage Leftover Lunch RL (A-LoL), a simple training algorithm that uses offline policy gradients for learning language generation tasks as a single action RL game.
Abstract: Reinforcement Learning with Human Feedback (RLHF) is the most prominent method for Language Model (LM) alignment. However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning. We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data. By assuming the entire LM output sequence as a single action, A-LoL allows incorporating sequence-level classifiers or human-designed scoring functions as rewards. Subsequently, by using LM’s value estimate, A-LoL only trains on positive advantage (leftover) data points, making it resilient to noise. Overall, A-LoL is an easy-to-implement, sample-efficient, and stable LM training recipe. We demonstrate the effectiveness of A-LoL and its variants with a set of four different language generation tasks. We compare against both online RL (PPO) and recent preference-based (DPO, PRO) and reward-based (GOLD) offline RL baselines. On the commonly-used RLHF benchmark, Helpful and Harmless Assistant (HHA), LMs trained with A-LoL methods achieve the highest diversity while also being rated more safe and helpful than the baselines according to humans. Additionally, in the remaining three tasks, A-LoL could optimize multiple distinct reward functions even when using noisy or suboptimal training data.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: reinforcement learning
Submission Number: 8769
Loading