Graph-Based Visual-Kinematic Fusion and Monte Carlo Initialization for Fast-Deployable Cable-Driven Robots
Abstract: Ease of calibration and high-accuracy task-space state-estimation purely based on onboard sensors is a key requirement for enabling easily deployable cable robots in real-world applications. In this work, we incorporate the onboard camera and kinematic sensors to drive a statistical fusion framework that presents a unified localization and calibration system which requires no initial values for the kinematic parameters. This is achieved by formulating a Monte-Carlo algorithm that initializes a factor-graph representation of the calibration and localization problem. With this, we are able to jointly identify both the kinematic parameters and the visual odometry scale alongside their corresponding uncertainties. We demonstrate the practical applicability of the framework using our state-estimation dataset recorded with the ARAS-CAM suspended cable driven parallel robot, and published as part of this manuscript.
Loading