Efficient Knowledge Transfer in Federated Recommendation for Joint Venture Ecosystem

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Federated Learning, Recommendation System
Abstract: The current Federated Recommendation System (FedRS) focuses on personalized recommendation services and assumes clients are personalized IoT devices (e.g., Mobile phones). In this paper, we deeply dive into new but practical FedRS applications within the joint venture ecosystem. Subsidiaries engage as participants with their users and items. However, in such a situation, merely exchanging item embedding is insufficient, as user bases always exhibit both overlaps and exclusive segments, demonstrating the complexity of user information. Meanwhile, directly uploading user information is a violation of privacy and unacceptable. To tackle the above challenges, we propose an efficient and privacy-enhanced federated recommendation for the joint venture ecosystem (FR-JVE) that each client transfers more common knowledge from other clients with a distilled user's \textit{rating preference} from the local dataset. More specifically, we first transform the local data into a new format and apply model inversion techniques to distill the rating preference with frozen user gradients before the federated training. Then, a bridge function is employed on each client side to align the local rating preference and aggregated global preference in a privacy-friendly manner. Finally, each client matches similar users to make a better prediction for overlapped users. From a theoretical perspective, we analyze how effectively FR-JVE can guarantee user privacy. Empirically, we show that FR-JVE achieves superior performance compared to state-of-the-art methods.
Supplementary Material: zip
Primary Area: Other (please use sparingly, only use the keyword field for more details)
Submission Number: 10215
Loading