Low-Rank High-Order Tensor Completion With Applications in Visual DataDownload PDFOpen Website

2022 (modified: 08 Nov 2022)IEEE Trans. Image Process. 2022Readers: Everyone
Abstract: Recently, tensor Singular Value Decomposition (t-SVD)-based low-rank tensor completion (LRTC) has achieved unprecedented success in addressing various pattern analysis issues. However, existing studies mostly focus on third-order tensors while order- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d\geq 4$ </tex-math></inline-formula> ) tensors are commonly encountered in real-world applications, like fourth-order color videos, fourth-order hyper-spectral videos, fifth-order light-field images, and sixth-order bidirectional texture functions. Aiming at addressing this critical issue, this paper establishes an order- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> tensor recovery framework including the model, algorithm and theories by innovatively developing a novel algebraic foundation for order- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> t-SVD, thereby achieving exact completion for any order- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> low t-SVD rank tensors with missing values with an overwhelming probability. Emperical studies on synthetic data and real-world visual data illustrate that compared with other state-of-the-art recovery frameworks, the proposed one achieves highly competitive performance in terms of both qualitative and quantitative metrics. In particular, as the observed data density becomes low, i.e., about 10%, the proposed recovery framework is still significantly better than its peers. The code of our algorithm is released at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/Qinwenjinswu/TIP-Code</uri>
0 Replies

Loading