Squeeze Training for Adversarial RobustnessDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Adversarial Training, Adversarial Examples, Model Robustness
TL;DR: We highlight that some collaborative examples, which show extremely lower prediction loss, can be utilized to enhance adversarial training. A novel method called squeeze training (ST) is thus proposed.
Abstract: The vulnerability of deep neural networks (DNNs) to adversarial examples has attracted great attention in the machine learning community. The problem is related to non-flatness and non-smoothness of normally obtained loss landscapes. Training augmented with adversarial examples (a.k.a., adversarial training) is considered as an effective remedy. In this paper, we highlight that some collaborative examples, nearly perceptually indistinguishable from both adversarial and benign examples yet show extremely lower prediction loss, can be utilized to enhance adversarial training. A novel method is therefore proposed to achieve new state-of-the-arts in adversarial robustness. Code: https://github.com/qizhangli/ST-AT.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
14 Replies

Loading