Abstract: This paper addresses the issue of discovering frequent patterns in order book shapes, in the context of the stock market depth, for ultra-high frequency data. It proposes a computational intelligence approach to building frequent patterns by clustering order book shapes with Self-Organizing Maps. An experimental evaluation of the approach proposed on the London Stock Exchange Rebuild Order Book database succeeded with providing a number of characteristic shape patterns and also with estimating probabilities of some typical transitions between shape patterns in the order book.
Loading