Grasshopper Optimization Algorithm: Theory, Literature Review, and Application in Hand Posture Estimation

Published: 01 Jan 2019, Last Modified: 18 Jul 2025Nature-Inspired Optimizers 2019EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This chapter covers the fundamental concepts of the recently proposed Grasshopper Optimization Algorithm (GOA). The inspiration, mathematical model, and the algorithm are presented in details. A brief literature review of this algorithm including different variants, improvement, hybrids, and applications are given too. The performance of GOA is tested on a set of test functions including unimodal, multi-modal, and composite. The results show the ability of GOA in improving the quality of a random population, transiting from exploration to exploitation, showing high coverage of the search space, and accelerating the convergence curve over the course of iterations. The chapter also applies the GOA algorithm to a challenging problem in the field of hand posture estimation. It is observed that GOA finds an accurate configuration for a 3D hand model to match a given hand image acquired from a camera.
Loading