SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity MeasurementDownload PDF

21 May 2021, 20:42 (edited 17 Dec 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: adaptive batching, large batch size, gradient similarity measure, gradient variance, gradient noise, large scale training
  • TL;DR: We propose SimiGrad, a fine-grained adaptive batching methodology for enabling automated and swift batch size adaption, driven by a lightweight gradient similarity measurement.
  • Abstract: Large scale training requires massive parallelism to finish the training within a reasonable amount of time. To support massive parallelism, large batch training is the key enabler but often at the cost of generalization performance. Existing works explore adaptive batching or hand-tuned static large batching, in order to strike a balance between the computational efficiency and the performance. However, these methods can provide only coarse-grained adaption (e.g., at a epoch level) due to the intrinsic expensive calculation or hand tuning requirements. In this paper, we propose a fully automated and lightweight adaptive batching methodology to enable fine-grained batch size adaption (e.g., at a mini-batch level) that can achieve state-of-the-art performance with record breaking batch sizes. The core component of our method is a lightweight yet efficient representation of the critical gradient noise information. We open-source the proposed methodology by providing a plugin tool that supports mainstream machine learning frameworks. Extensive evaluations on popular benchmarks (e.g., CIFAR10, ImageNet, and BERT-Large) demonstrate that the proposed methodology outperforms state-of-the-art methodologies using adaptive batching approaches or hand-tuned static strategies in both performance and batch size. Particularly, we achieve a new state-of-the-art batch size of 78k in BERT-Large pretraining with SQuAD score 90.69 compared to 90.58 reported in previous state-of-the-art with 59k batch size.
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: https://github.com/HeyangQin/SimiGrad
9 Replies

Loading