Provable Reset-free Reinforcement Learning by No-Regret Reduction

Published: 24 Apr 2023, Last Modified: 15 Jun 2023ICML 2023 PosterEveryoneRevisions
Abstract: Reinforcement learning (RL) so far has limited real-world applications. One key challenge is that typical RL algorithms heavily rely on a reset mechanism to sample proper initial states; these reset mechanisms, in practice, are expensive to implement due to the need for human intervention or heavily engineered environments. To make learning more practical, we propose a generic no-regret reduction to systematically design reset-free RL algorithms. Our reduction turns the reset-free RL problem into a two-player game. We show that achieving sublinear regret in this two-player game would imply learning a policy that has both sublinear performance regret and sublinear total number of resets in the original RL problem. This means that the agent eventually learns to perform optimally and avoid resets. To demonstrate the effectiveness of this reduction, we design an instantiation for linear Markov decision processes, which is the first provably correct reset-free RL algorithm.
Submission Number: 3610
Loading