SELF-EVOLVED REWARD LEARNING FOR LLMS

ICLR 2025 Conference Submission6650 Authors

26 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: RLHF, LLM, Self-learning
Abstract: Reinforcement Learning from Human Feedback (RLHF) is a crucial technique for aligning language models with human preferences and is a key factor in the success of modern conversational models like GPT-4, ChatGPT, and Llama 2. A significant challenge in employing RLHF lies in training a reliable RM, which relies on high-quality labels. Typically, these labels are provided by human experts or a stronger AI, both of which can be costly and introduce bias that may affect the language model's responses. As models improve, human input may become less effective in enhancing their performance. This paper explores the potential of using the RM itself to generate additional training data for a more robust RM. Our experiments demonstrate that reinforcement learning from self-feedback outperforms baseline approaches. We conducted extensive experiments with our approach on multiple datasets, such as HH-RLHF and UltraFeedback, and models including Mistral and Llama 3, comparing it against various baselines. Our results indicate that, even with a limited amount of human-labeled data, learning from self-feedback can robustly enhance the performance of the RM, thereby improving the capabilities of large language models.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6650
Loading