Are Large Language Models Chameleons?

Published: 18 Jun 2024, Last Modified: 26 Jul 2024ICML 2024 Workshop on LLMs and Cognition PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: survey data, survey methodology, fairness, bias, prompts, human values
TL;DR: Based on over a million simulations, compared to real European survey data
Abstract: Do large language models (LLMs) have their own worldviews and personality tendencies? Simulations in which an LLM was asked to answer subjective questions were conducted more than 1 million times. Comparison of the responses from different LLMs with real data from the European Social Survey (ESS) suggests that the effect of prompts on bias and variability is fundamental, highlighting major cultural, age, and gender biases. Methods for measuring the difference between LLMs and survey data are discussed, such as calculating weighted means and a new proposed measure inspired by Jaccard similarity. We conclude that it is important to analyze the robustness and variability of prompts before using LLMs to model individual decisions or collective behavior, as their imitation abilities are approximate at best.
Submission Number: 53
Loading