All-or-Nothing Phenomena: From Single-Letter to High Dimensions.Download PDFOpen Website

2019 (modified: 09 Nov 2022)CAMSAP2019Readers: Everyone
Abstract: We consider the problem of estimating a <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$p$</tex> -dimensional vector <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\beta$</tex> from <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n$</tex> observations <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$Y=X\beta+W$</tex> , where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\beta_{j}\mathop{\sim}^{\mathrm{i.i.d}.}\pi$</tex> for a real-valued distribution <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\pi$</tex> with zero mean and unit variance’ <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$X_{ij}\mathop{\sim}^{\mathrm{i.i.d}.}\mathcal{N}(0,1)$</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$W_{i}\mathop{\sim}^{\mathrm{i.i.d}.}\mathcal{N}(0,\ \sigma^{2})$</tex> . In the asymptotic regime where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n/p\rightarrow\delta$</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$p/\sigma^{2}\rightarrow$</tex> snr for two fixed constants <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\delta,\ \mathsf{snr}\in(0,\ \infty)$</tex> as <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$p\rightarrow\infty$</tex> , the limiting (normalized) minimum mean-squared error (MMSE) has been characterized by a single-letter (additive Gaussian scalar) channel. In this paper, we show that if the MMSE function of the single-letter channel converges to a step function, then the limiting MMSE of estimating <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\beta$</tex> converges to a step function which jumps from 1 to 0 at a critical threshold. Moreover, we establish that the limiting mean-squared error of the (MSE-optimal) approximate message passing algorithm also converges to a step function with a larger threshold, providing evidence for the presence of a computational-statistical gap between the two thresholds.
0 Replies

Loading