Guideline Compliance in Task-Oriented Dialogue: The Chained Prior Approach

Published: 01 Jan 2025, Last Modified: 20 May 2025NAACL (Findings) 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Task-oriented dialogue (TOD) systems are widely used across various domains, including customer service, appointment scheduling, and technical support. In real-world scenarios, such systems must adhere to given operational guidelines. However, existing solutions based on large language models often cannot achieve strict guideline compliance, even when fine-tuned with domain knowledge. To address this issue, we introduce a novel TOD system named GuidedTOD, which explicitly considers domain-specific guidelines by integrating a policy module. This module employs a Markov Chain, termed Chained Prior, to efficiently encode and dynamically update guideline knowledge. During inference, the Chained Prior re-ranks outputs from the domain-expert language model using beam search, ensuring guideline adherence. Experimental results show that GuidedTOD significantly improves guideline compliance, achieving approximately 20% better action prediction accuracy than state-of-the-art solutions. Code is available here: https://github.com/cure-lab/GuidedTOD.
Loading