One-for-All Few-Shot Anomaly Detection via Instance-Induced Prompt Learning

Published: 22 Jan 2025, Last Modified: 03 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Anomaly detection, few-shot, vision-language model
Abstract: Anomaly detection methods under the 'one-for-all' paradigm aim to develop a unified model capable of detecting anomalies across multiple classes. However, these approaches typically require a large number of normal samples for model training, which may not always be feasible in practice. Few-shot anomaly detection methods can address scenarios with limited data but often require a tailored model for each class, struggling within the 'one-for-one' paradigm. In this paper, we first proposed the one-for-all few-shot anomaly detection method with the assistance of vision-language model. Different from previous CLIP-based methods learning fix prompts for each class, our method learn a class-shared prompt generator to adaptively generate suitable prompt for each instance. The prompt generator is trained by aligning the prompts with the visual space and utilizing guidance from general textual descriptions of normality and abnormality. Furthermore, we address the mismatch problem of the memory bank within one-for-all paradigm. Extensive experimental results on MVTec and VisA demonstrate the superiority of our method in few-shot anomaly detection task under the one-for-all paradigm.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13750
Loading