HW-NAS-Bench: Hardware-Aware Neural Architecture Search BenchmarkDownload PDF

Published: 12 Jan 2021, Last Modified: 05 May 2023ICLR 2021 SpotlightReaders: Everyone
Keywords: Hardware-Aware Neural Architecture Search, AutoML, Benchmark
Abstract: HardWare-aware Neural Architecture Search (HW-NAS) has recently gained tremendous attention by automating the design of deep neural networks deployed in more resource-constrained daily life devices. Despite its promising performance, developing optimal HW-NAS solutions can be prohibitively challenging as it requires cross-disciplinary knowledge in the algorithm, micro-architecture, and device-specific compilation. First, to determine the hardware-cost to be incorporated into the NAS process, existing works mostly adopt either pre-collected hardware-cost look-up tables or device-specific hardware-cost models. The former can be time-consuming due to the required knowledge of the device’s compilation method and how to set up the measurement pipeline, while building the latter is often a barrier for non-hardware experts like NAS researchers. Both of them limit the development of HW-NAS innovations and impose a barrier-to-entry to non-hardware experts. Second, similar to generic NAS, it can be notoriously difficult to benchmark HW-NAS algorithms due to their significant required computational resources and the differences in adopted search spaces, hyperparameters, and hardware devices. To this end, we develop HW-NAS-Bench, the first public dataset for HW-NAS research which aims to democratize HW-NAS research to non-hardware experts and make HW-NAS research more reproducible and accessible. To design HW-NAS-Bench, we carefully collected the measured/estimated hardware performance (e.g., energy cost and latency) of all the networks in the search spaces of both NAS-Bench-201 and FBNet, on six hardware devices that fall into three categories (i.e., commercial edge devices, FPGA, and ASIC). Furthermore, we provide a comprehensive analysis of the collected measurements in HW-NAS-Bench to provide insights for HW-NAS research. Finally, we demonstrate exemplary user cases to (1) show that HW-NAS-Bench allows non-hardware experts to perform HW-NAS by simply querying our pre-measured dataset and (2) verify that dedicated device-specific HW-NAS can indeed lead to optimal accuracy-cost trade-offs. The codes and all collected data are available at https://github.com/RICE-EIC/HW-NAS-Bench.
One-sentence Summary: A Hardware-Aware Neural Architecture Search Benchmark
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Data: [CIFAR-10](https://paperswithcode.com/dataset/cifar-10), [CIFAR-100](https://paperswithcode.com/dataset/cifar-100), [NAS-Bench-201](https://paperswithcode.com/dataset/nas-bench-201)
18 Replies

Loading