In-Context Policy IterationDownload PDF

05 Oct 2022 (modified: 05 May 2023)FMDM@NeurIPS2022Readers: Everyone
Keywords: Reinforcement Learning, In-Context Learning, Foundation Models
TL;DR: We present a novel algorithm for performing policy iteration through in-context adaptation.
Abstract: This work presents In-Context Policy Iteration, an algorithm for performing Reinforcement Learning (RL), in-context, using foundation models. While the application of foundation models to RL has received considerable attention, most approaches rely on either (1) the curation of expert demonstrations (either through manual design or task-specific pretraining) or (2) adaptation to the task of interest using gradient methods (either fine-tuning or training of adapter layers). Both of these techniques have drawbacks. Collecting demonstrations is labor-intensive, and algorithms that rely on them do not outperform the experts from which the demonstrations were derived. All gradient techniques are inherently slow, sacrificing the “few-shot” quality that made in-context learning attractive to begin with. In this work, we present an algorithm, ICPI, that learns to perform RL tasks without expert demonstrations or gradients. Instead we present a policy-iteration method in which the prompt content is the entire locus of learning. ICPI iteratively updates the contents of the prompt from which it derives its policy through trial-and-error interaction with an RL environment. In order to eliminate the role of in-weights learning (on which approaches like Decision Transformer rely heavily), we demonstrate our algorithm using Codex Chen et al. (2021b), a language model with no prior knowledge of the domains on which we evaluate it.
0 Replies

Loading