Abstract: We introduce NSF-SciFy, a comprehensive dataset of scientific claims and investigation proposals extracted from National Science Foundation award abstracts. While previous scientific claim verification datasets have been limited in size and scope, NSF-SciFy represents a significant advance with an estimated 2.8 million claims from 400,000 abstracts spanning all science and mathematics disciplines. We present two focused subsets: NSF-SciFy-MatSci with 114,000 claims from materials science awards, and NSF-SciFy-20K with 135,000 claims across five NSF directorates. Using zero-shot prompting, we develop a scalable approach for joint extraction of scientific claims and investigation proposals. We demonstrate the dataset's utility through three downstream tasks: non-technical abstract generation, claim extraction, and investigation proposal extraction. Fine-tuning language models on our dataset yields substantial improvements, with relative gains often exceeding 100\%, particularly for claim and proposal extraction tasks. Our error analysis reveals that extracted claims exhibit high precision but lower recall, suggesting opportunities for further methodological refinement. NSF-SciFy enables new research directions in large-scale claim verification, scientific discovery tracking, and meta-scientific analysis.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: NLP Applications, Resources and Evaluation
Contribution Types: NLP engineering experiment, Publicly available software and/or pre-trained models, Data resources
Languages Studied: English
Submission Number: 5412
Loading