A Novel Patch Variance Biased Convolutional Neural Network for No-Reference Image Quality AssessmentDownload PDFOpen Website

Published: 01 Jan 2019, Last Modified: 15 May 2023IEEE Trans. Circuits Syst. Video Technol. 2019Readers: Everyone
Abstract: Deep convolutional neural networks (CNNs) have been successfully applied on no-reference image quality assessment (NR-IQA) with respect to human perception. Most of these methods deal with small image patches and use the average score of the test patches for predicting the whole image quality. We discovered that image patches from homogenous regions are unreliable for both neural network training and final image quality score estimation. In addition, image patches with complex structures have much higher chances of achieving better image quality prediction. Based on these findings, we enhanced the conventional CNN-based NR-IQA algorithm to avoid homogenous patches for the network training and quality score estimation. Moreover, we also use a variance-based weighting average to bias the final image quality score to the patches with complex structure. The experimental results show that this simple approach can achieve state-of-the-art performance compared with well-known NR-IQA algorithms.
0 Replies

Loading