AToken: A Unified Tokenizer for Vision

08 Sept 2025 (modified: 12 Nov 2025)ICLR 2026 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Tokenizer, Omni model
Abstract: We present AToken, the first unified visual tokenizer that achieves both high-fidelity reconstruction and semantic understanding across images, videos, and 3D assets. Unlike existing tokenizers that specialize in either reconstruction or understanding for single modalities, AToken encodes these diverse visual inputs in a shared 4D latent space, optimizing without separate model designs. Specifically, we introduce a pure transformer architecture with 4D rotary position embeddings to process visual inputs of arbitrary resolutions and temporal durations. To ensure stable training, we introduce an adversarial-free training objective that combines perceptual and Gram matrix losses, achieving state-of-the-art reconstruction quality. By employing a progressive training curriculum, AToken gradually expands from single images, videos, and 3D, and supports both continuous and discrete latent tokens. AToken achieves 0.21 rFID with 82.2% ImageNet accuracy for images, 3.01 rFVD with 32.6% MSRVTT retrieval for videos, and 28.19 PSNR with 90.9% classification accuracy for 3D. In downstream applications, AToken enables both visual generation tasks (e.g., image generation with continuous and discrete tokens, text-to-video generation, image-to-3D synthesis) and understanding tasks (e.g., multimodal LLMs), achieving 1.44/2.23 gFID on ImageNet for continuous/discrete tokens, and 48.7% on MMMU and 64.5% on VideoMME. These results shed light on the next-generation multimodal AI systems built upon the unified visual tokenization.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 3202
Loading