Abstract: Many online services allow users to participate in various group activities such as online meeting or group buying and thus need to provide user groups with services that they are interested. The group recommender systems emerge as required and provide personalized services for various online user groups. Data sparsity is an important issue in group recommender systems, since even fewer group-item interactions are observed. Transfer learning has been one efficient tool to alleviate the data sparsity issue in recommender systems for individual users, but have not been utilized for group recommendation. Moreover, the group and the group members have complex and mutual relationships with each other, which exacerbates the difficulty in modelling the preferences of both a group and its members for recommendation. Therefore, group recommender systems face three main challenges that may significantly impact its quality and accuracy: (1) taking consideration of group member relationship and their interactions in modelling user and group preferences; (2) ensuring latent feature spaces between the users and groups are maximally matched; and (3) constructing a deep group recommendation method that both the individual user and group domains can benefit from a knowledge exchange. Hence, in this paper, we propose a deep adversarial group recommendation method, called DA-GR. User feature are separated into two subspaces to ensure only consistent group members’ feature knowledge can be extracted and shared with group preference modelling. Adversarial learning is used to effectively transfer consistent knowledge from individual user interactions to the group interaction domain through the bridge of group-user relationships. Extensive experiments, which demonstrate the effectiveness and superiority of our proposal, providing accurate recommendation for both individual users and groups, are conducted on public datasets. The source code of DA-GR is in https://github.com/ccnu-mathits/DA-GR.
Loading