MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-NC 4.0
Keywords: multimodal learning, hallucinations, evaluation
Abstract: Multimodal hallucination in multimodal large language models (MLLMs) restricts the correctness of MLLMs. However, multimodal hallucinations are multi-sourced and arise from diverse causes. Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations. This failure constitutes a significant issue and hinders the diagnosis of multimodal reasoning failures within MLLMs. To address this, we propose the MIRAGE benchmark, which isolates reasoning hallucinations by constructing questions where input images are correctly perceived by MLLMs yet reasoning errors persist. MIRAGE introduces multi-granular evaluation metrics: accuracy, factuality, and LLMs hallucination score for hallucination quantification. Our analysis reveals strong correlations between question types and specific hallucination patterns, particularly systematic failures of MLLMs in spatial reasoning involving complex relationships (\emph{e.g.}, complex geometric patterns across images). This highlights a critical limitation in the reasoning capabilities of current MLLMs and provides targeted insights for hallucination mitigation on specific types. To address these challenges, we propose Logos, a method that combines curriculum reinforcement fine-tuning to encourage models to generate logic-consistent reasoning chains by stepwise reducing learning difficulty, and collaborative hint inference to reduce reasoning complexity. Logos establishes a baseline on MIRAGE, and reduces the logical hallucinations in original base models. Link: \url{https://bit.ly/25mirage}.
Supplementary Material: zip
Primary Area: Evaluation (e.g., methodology, meta studies, replicability and validity, human-in-the-loop)
Submission Number: 11966
Loading