EmoTrans: Emotional Transition-based Model for Emotion Recognition in Conversation

Published: 01 Jan 2024, Last Modified: 19 Feb 2025LREC/COLING 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In an emotional conversation, emotions are causally transmitted among communication participants, constituting a fundamental conversational feature that can facilitate the comprehension of intricate changes in emotional states during the conversation and contribute to neutralizing emotional semantic bias in utterance caused by the absence of modality information. Therefore, emotional transition (ET) plays a crucial role in the task of Emotion Recognition in Conversation (ERC) that has not received sufficient attention in current research. In light of this, an Emotional Transition-based Emotion Recognizer (EmoTrans) is proposed in this paper. Specifically, we concatenate the most recent utterances with their corresponding speakers to construct the model input, known as samples, each with several placeholders to implicitly express the emotions of contextual utterances. Based on these placeholders, two components are developed to make the model sensitive to emotions and effectively capture the ET features in the sample. Furthermore, an ET-based Contrastive Learning (CL) is developed to compact the representation space, making the model achieve more robust sample representations. We conducted exhaustive experiments on four widely used datasets and obtained competitive experimental results, especially, new state-of-the-art results obtained on MELD and IEMOCAP, demonstrating the superiority of EmoTrans.
Loading