Abstract: Large language models (LLMs) have achieved remarkable success across a wide range of tasks, particularly in natural language processing and computer vision. This success naturally raises an intriguing yet unexplored question: Can LLMs be harnessed to tackle channel state information (CSI) compression and feedback in massive multiple-input multiple-output (MIMO) systems? Efficient CSI feedback is a critical challenge in next-generation wireless communication. In this paper, we pioneer the use of LLMs for CSI compression, introducing a novel framework that leverages the powerful denoising capabilities of LLMs -- capable of error correction in language tasks -- to enhance CSI reconstruction performance. To effectively adapt LLMs to CSI data, we design customized pre-processing, embedding, and post-processing modules tailored to the unique characteristics of wireless signals. Extensive numerical results demonstrate the promising potential of LLMs in CSI feedback, opening up possibilities for this research direction.
External IDs:dblp:journals/corr/abs-2501-10630
Loading