Keywords: Novel View Synthesis, Self-Supervised, Unsupervised, Representation Learning
TL;DR: The key criterion for determining whether a models is capable of NVS is transferability, and we present the first fully geometry-free and self-supervised model capable of it.
Abstract: In this paper, we identify that the key criterion for determining whether a model is truly capable of novel view synthesis (NVS) is transferability: Whether any pose representation extracted from one video sequence can be used to re-render the same camera trajectory in another. We analyze prior work on self-supervised NVS and find that their predicted poses do not transfer: The same set of poses lead
to different camera trajectories in different 3D scenes. Here, we present XFactor, the first geometry-free self-supervised model capable of true NVS. XFactor combines pair-wise pose estimation with a simple augmentation scheme of the inputs and outputs that jointly enables disentangling camera pose from scene content and facilitates geometric reasoning. Remarkably, we show that XFactor achieves transferability with unconstrained latent pose variables, without any 3D inductive biases or concepts from multi-view geometry — such as an explicit parameterization of poses as elements of SE(3). We introduce a new metric to quantify transferability, and through large-scale experiments, we demonstrate that XFactor significantly outperforms prior pose-free NVS transformers, and show that latent poses are highly correlated with real-world poses through probing experiments.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 13980
Loading