Bias Mimicking: A Simple Sampling Approach for Bias MitigationDownload PDF

22 Sept 2022 (modified: 25 Nov 2024)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Fairness, Spurious Correlations, Bias, Sampling Methods.
Abstract: Prior work has shown that Visual Recognition datasets frequently under-represent sensitive groups (\eg Female) within a category (\eg Programmers). This dataset bias can lead to models that learn spurious correlations between class labels and sensitive attributes such as age, gender, or race. Most of the recent methods that address this problem require significant architectural changes or expensive hyper-parameter tuning. Alternatively, data re-sampling baselines from the class imbalance literature (\eg Undersampling, Upweighting), which can often be implemented in a single line of code and often have no hyperparameters, offer a cheaper and more efficient solution. However, we found that some of these baselines were missing from recent bias mitigation benchmarks. In this paper, we show that these simple methods are strikingly competitive with state-of-the-art bias mitigation methods on many datasets. Furthermore, we improve these methods by introducing a new class conditioned sampling method: Bias Mimicking. In cases where the baseline dataset re-sampling methods do not perform well, Bias Mimicking effectively bridges the performance gap and improves the total averaged accuracy of under-represented subgroups by over $3\%$ compared to prior work.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/bias-mimicking-a-simple-sampling-approach-for/code)
9 Replies

Loading