Improved reviewer assignment based on both word and semantic featuresDownload PDFOpen Website

Published: 01 Jan 2021, Last Modified: 11 May 2023Inf. Retr. J. 2021Readers: Everyone
Abstract: Assigning appropriate reviewers to a manuscript from a pool of candidate reviewers is a common challenge in the academic community. Current word- and semantic-based approaches treat the reviewer assignment problem (RAP) as an information retrieval problem but do not take into account two constraints of the RAP: incompleteness of the reviewer data and interference from nonmanuscript-related papers. In this paper, a word and semantic-based iterative model (WSIM) is proposed to account for the constraints of the RAP by improving the similarity calculations between reviewers and manuscripts. First, we use the improved language model and topic model to extract word features and semantic features to represent reviewers and manuscripts. Second, we use a similarity metric based on the normalized discounted cumulative gain (NDCG) to measure semantic similarity. This metric ignores the probability value (quantitative exact value) of the topic and considers only the ranking (qualitative relevance), thus reducing overfitting to incomplete reviewer data. Finally, we use an iterative model to reduce the interference from nonmanuscript-related papers in the reviewer data. This approach considers the similarity between the manuscript and each of the reviewer’s papers. We evaluate the proposed WSIM on two real datasets and compare its performance to that of seven existing methods. The experimental results show that the WSIM improves the recommendation accuracy by at least 2.5% on the top 20.
0 Replies

Loading