Watermarking Without Standards Is Not AI Governance

Published: 05 Jun 2025, Last Modified: 15 Jul 2025ICML 2025 Workshop TAIG PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: AI Governance, Watermarking, Content Provenance
TL;DR: Our paper argues that current AI watermarking lacks robustness, auditability, and enforceable standards, undermining its role in AI governance.
Abstract: Watermarking has emerged as a leading technical proposal for attributing generative AI content and is increasingly cited in global governance frameworks. This paper argues that current implementations risk serving as symbolic compliance rather than delivering effective oversight. We identify a growing gap between regulatory expectations and the technical limitations of existing watermarking schemes. Through analysis of policy proposals and industry practices, we show how incentive structures disincentivize robust, auditable deployments. To realign watermarking with governance goals, we propose a three-layer framework encompassing technical standards, audit infrastructure, and enforcement mechanisms. Without enforceable requirements and independent verification, watermarking will remain inadequate for accountability and ultimately undermine broader efforts in AI safety and regulation.
Submission Number: 48
Loading