Abstract: Iterative graph processing is widely used as a significant paradigm for large-scale data analysis. In many global businesses of multinational enterprises, graph-structure data is usually geographically distributed in different regions to support low-latency services. Geo-distributed graph processing suffers from the Wide Area Networks (WANs) with scarce and heterogeneous bandwidth, thus essentially differs from traditional distributed graph processing. In this paper, we propose RAGraph, a Region-Aware framework for geo-distributed graph processing . At the core of RAGraph, we design a region-aware graph processing framework that allows advancing inefficient global updates locally and enables sensible coordination-free message interactions and flexible replaceable communication module. In terms of graph data preprocessing, RAGraph introduces a contribution-driven edge migration algorithm to effectively utilize network resources. RAGraph also contains an adaptive hierarchical message interaction engine to switch interaction modes adaptively based on network heterogeneity and fluctuation, and a discrepancy-aware message filtering strategy to filter important messages. Experimental results show that RAGraph can achieve an average speedup of 9.7× (up to 98×) and an average WAN cost reduction of 78.5 $\%$ (up to 97.3 $\%$ ) compared with state-of-the-art systems.
Loading