Keywords: Large language model, Jailbreak, Backdoor, Attack, Safety, Model Editing
Abstract: Jailbreak backdoor attacks on LLMs have garnered attention for their effectiveness and stealth. However, existing methods rely on the crafting of poisoned datasets and the time-consuming process of fine-tuning. In this work, we propose JailbreakEdit, a novel jailbreak backdoor injection method that exploits model editing techniques to inject a universal jailbreak backdoor into safety-aligned LLMs with minimal intervention *in minutes*. JailbreakEdit integrates a multi-node target estimation to estimate the jailbreak space, thus creating shortcuts from the backdoor to this estimated jailbreak space that induce jailbreak actions. Our attack effectively shifts the models' attention by attaching strong semantics to the backdoor, enabling it to bypass internal safety mechanisms. Experimental results show that JailbreakEdit achieves a high jailbreak success rate on jailbreak prompts while preserving generation quality, and safe performance on normal queries. Our findings underscore the effectiveness, stealthiness, and explainability of JailbreakEdit, emphasizing the need for more advanced defense mechanisms in LLMs.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10721
Loading