Confidence Elicitation: A New Attack Vector for Large Language Models

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: adversarial attack, adversarial robustness, confidence elicitation.
TL;DR: Using confidence elicitation to find adversarial samples
Abstract:

A fundamental issue in deep learning has been adversarial robustness. As these systems have scaled, such issues have persisted. Currently, large language models (LLMs) with billions of parameters suffer from adversarial attacks just like their earlier, smaller counterparts. However, the threat models have changed. Previously, having gray-box access, where input embeddings or output logits/probabilities were visible to the user, might have been reasonable. However, with the introduction of closed-source models, no information about the model is available apart from the generated output. This means that current black-box attacks can only utilize the final prediction to detect if an attack is successful. In this work, we investigate and demonstrate the potential of attack guidance, akin to using output probabilities, while having only black-box access in a classification setting. This is achieved through the ability to elicit confidence from the model. We empirically show that the elicited confidence is calibrated and not hallucinated for current LLMs. By minimizing the elicited confidence, we can therefore increase the likelihood of misclassification. Our new proposed paradigm demonstrates promising state-of-the-art results on three datasets across two models (LLaMA-3-8B-Instruct and Mistral-7B-Instruct-V0.3) when comparing our technique to existing hard-label black-box attack methods that introduce word-level substitutions. The code is publicly available at GitHub: Confidence_Elicitation_Attacks.

Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8520
Loading