LaRa: Latents and Rays for Multi-Camera Bird’s-Eye-View Semantic SegmentationDownload PDF

16 Jun 2022, 10:45 (modified: 15 Nov 2022, 22:08)CoRL 2022 PosterReaders: Everyone
Student First Author: yes
Keywords: bird’s eye view semantic segmentation, encoder-decoder transformers, autonomous driving
TL;DR: In this work, we present LaRa, a model doing deep multi-camera fusion in a latent representation for bird's-eye-view vehicle binary segmentation.
Abstract: Recent works in autonomous driving have widely adopted the bird’seye-view (BEV) semantic map as an intermediate representation of the world. Online prediction of these BEV maps involves non-trivial operations such as multi-camera data extraction as well as fusion and projection into a common topview grid. This is usually done with error-prone geometric operations (e.g., homography or back-projection from monocular depth estimation) or expensive direct dense mapping between image pixels and pixels in BEV (e.g., with MLP or attention). In this work, we present ‘LaRa’, an efficient encoder-decoder, transformer-based model for vehicle semantic segmentation from multiple cameras. Our approach uses a system of cross-attention to aggregate information over multiple sensors into a compact, yet rich, collection of latent representations. These latent representations, after being processed by a series of selfattention blocks, are then reprojected with a second cross-attention in the BEV space. We demonstrate that our model outperforms the best previous works using transformers on nuScenes. The code and trained models are available at
Supplementary Material: zip
10 Replies