Towards Semi-Supervised Learning with Non-Random Missing LabelsDownload PDF

Published: 01 Feb 2023, Last Modified: 17 Sept 2023Submitted to ICLR 2023Readers: Everyone
Keywords: semi-supervised learning, label missing not at random, pseudo-rectifying guidance
TL;DR: A simple but effective approach yielding tangible improvement in the performance of semi-supervised learning with non-random missing labels.
Abstract: Semi-supervised learning (SSL) tackles the label missing problem by enabling the effective usage of unlabeled data. While existing SSL methods focus on the traditional setting, a practical and challenging scenario called label Missing Not At Random (MNAR) is usually ignored. In MNAR, the labeled and unlabeled data fall into different class distributions resulting in biased label imputation, which deteriorates the performance of SSL models. In this work, class transition tracking based Pseudo-Rectifying Guidance (PRG) is devised for MNAR. We explore the class-level guidance information obtained by the Markov random walk, which is modeled on a dynamically created graph built over the class tracking matrix. PRG unifies the history information of each class transition caused by the pseudo-rectifying procedure to activate the model's enthusiasm for neglected classes, so as the quality of pseudo-labels on both popular classes and rare classes in MNAR could be improved. We show the superior performance of PRG across a variety of the MNAR scenarios and the conventional SSL setting, outperforming the latest SSL solutions by a large margin. Checkpoints and evaluation code are available at the anonymous link while the source code will be available upon paper acceptance.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
23 Replies