Keywords: Hyperparameter Optimization, Efficiency, Data Subset Selection, Submodularity
Abstract: Deep neural networks have seen great success in recent years; however, training a deep model is often challenging as its performance heavily depends on the hyper-parameters used. In addition, finding the optimal hyper-parameter configuration, even with state-of-the-art (SOTA) hyper-parameter optimization (HPO) algorithms, can be time-consuming, requiring multiple training runs over the entire dataset
for different possible sets of hyper-parameters. Our central insight is that using an informative subset of the dataset for model training runs involved in hyper-parameter optimization, allows us to find the optimal hyper-parameter configuration significantly faster. In this work, we propose AUTOMATA, a gradient-based subset selection framework for hyper-parameter tuning. We empirically evaluate the effectiveness of AUTOMATA in hyper-parameter tuning through several experiments on real-world datasets in the text, vision, and tabular domains. Our experiments show that using gradient-based data subsets for hyper-parameter tuning achieves significantly faster turnaround times and speedups of 3×-30× while achieving comparable performance to the hyper-parameters found using the entire dataset.
Supplementary Material: pdf
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/automata-gradient-based-data-subset-selection/code)
14 Replies
Loading