Learning Geometric Reasoning Networks For Robot Task And Motion Planning

Published: 22 Jan 2025, Last Modified: 26 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Graph Neural Networks, Deep Learning for Robotics, Task and Motion Planning, Robot Manipulation Planning
Abstract: Task and Motion Planning (TAMP) is a computationally challenging robotics problem due to the tight coupling of discrete symbolic planning and continuous geometric planning of robot motions. In particular, planning manipulation tasks in complex 3D environments leads to a large number of costly geometric planner queries to verify the feasibility of considered actions and plan their motions. To address this issue, we propose Geometric Reasoning Networks (GRN), a graph neural network (GNN)-based model for action and grasp feasibility prediction, designed to significantly reduce the dependency on the geometric planner. Moreover, we introduce two key interpretability mechanisms: inverse kinematics (IK) feasibility prediction and grasp obstruction (GO) estimation. These modules not only improve feasibility predictions accuracy, but also explain why certain actions or grasps are infeasible, thus allowing a more efficient search for a feasible solution. Through extensive experimental results, we show that our model outperforms state-of-the-art methods, while maintaining generalizability to more complex environments, diverse object shapes, multi-robot settings, and real-world robots.
Supplementary Material: zip
Primary Area: applications to robotics, autonomy, planning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10928
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview