Navigating the Rabbit Hole: Emergent Biases in LLM-Generated Attack Narratives Targeting Mental Health Groups

Published: 08 Jul 2025, Last Modified: 26 Aug 2025COLM 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Mental Health, Network Analysis, Stigmatization, Emergent Bias, Toxicity
TL;DR: We propose a framework to analyze the disproportionate targeting of mental health groups in LLM-generated attack chains.
Abstract: Large Language Models (LLMs) have been shown to demonstrate imbalanced biases against certain groups. However, the study of unprovoked targeted attacks by LLMs towards at-risk populations remains underexplored. Our paper presents three novel contributions: (1) the explicit evaluation of LLM-generated attacks on highly vulnerable mental health groups; (2) a network-based framework to study the propagation of relative biases; and (3) an assessment of the relative degree of stigmatization that emerges from these attacks. Our analysis of a recently released large-scale bias audit dataset reveals that mental health entities occupy central positions within attack narrative networks, as revealed by a significantly higher mean centrality of closeness (p-value = 4.06e-10) and dense clustering (Gini coefficient = 0.7). Drawing from an established stigmatization framework, our analysis indicates increased labeling components for mental health disorder-related targets relative to initial targets in generation chains. Taken together, these insights shed light on the structural predilections of large language models to heighten harmful discourse and highlight the need for suitable approaches for mitigation.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 1731
Loading