Keywords: Recurrent neural networks, quantization, orthogonal matrices, Hadamard matrices
TL;DR: This paper proposes a novel method to binarize the recurrent weight matrix of an orthogonal recurrent neural network. It also proposes a method to make the recurrent weight matrix sparse and ternary.
Abstract: Binary and sparse ternary weights in neural networks enable faster computations and lighter representations, facilitating their use on edge devices with limited computational power. Meanwhile, vanilla RNNs are highly sensitive to changes in their recurrent weights, making the binarization and ternarization of these weights inherently challenging. To date, no method has successfully achieved binarization
or ternarization of vanilla RNN weights. We present a new approach leveraging the properties of Hadamard matrices to parameterize a subset of binary and sparse ternary orthogonal matrices. This method enables the training of orthogonal RNNs (ORNNs) with binary and sparse ternary recurrent weights, effectively creating a specific class of binary and sparse ternary vanilla RNNs. The resulting ORNNs, called HadamRNN and Block-HadamRNN, are evaluated on benchmarks such as the copy task, permuted and sequential MNIST tasks, and IMDB dataset. Despite binarization or sparse ternarization, these RNNs maintain performance levels comparable to state-of-the-art full-precision models, highlighting the effectiveness of our approach. Notably, our approach is the first solution with binary recurrent weights capable of tackling the copy task over 1000 timesteps.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3103
Loading