3D polygonal representation of dense point clouds by triangulation, segmentation, and texture projection

Published: 01 Jan 2010, Last Modified: 18 Oct 2024Three-Dimensional Image Processing (3DIP) and Applications 2010EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: A basic concern of computer graphic is the modeling and realistic representation of three-dimensional objects. In this paper we present our reconstruction framework which determines a polygonal surface from a set of dense points such those typically obtained from laser scanners. We deploy the concept of adaptive blobs to achieve a first volumetric representation of the object. In the next step we estimate a coarse surface using the marching cubes method. We propose to deploy a depth-first search segmentation algorithm traversing a graph representation of the obtained polygonal mesh in order to identify all connected components. A so called supervised triangulation maps the coarse surfaces onto the dense point cloud. We optimize the mesh topology using edge exchange operations. For photo-realistic visualization of objects we finally synthesize optimal low-loss textures from available scene captures of different projections. We evaluate our framework on artificial data as well as real sensed data.
Loading