Transformers self-organize like newborn visual systems when trained in prenatal worlds

ICLR 2026 Conference Submission18993 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: transformers, prenatal, retinal waves, newborn visual system, orientation, shape perception
TL;DR: Transformers trained on simulated prenatal retinal wave develop brain-like visual structures, suggesting that both systems may learn through shared, general principles of space-time fitting.
Abstract: Do transformers learn like brains? A key challenge in addressing this question is that transformers and brains are trained on fundamentally different data. Brains are initially ”trained” on prenatal sensory experiences (e.g., retinal waves), whereas transformers are typically trained on large datasets that are not biologically plausible. We reasoned that if transformers learn like brains, then they should develop the same structure as newborn brains when exposed to the same prenatal data. To test this prediction, we simulated prenatal visual input using a retinal wave generator. Then, using self-supervised temporal learning, we trained transformers to adapt to those retinal waves. During training, the transformers spontaneously developed the same structure as newborn visual systems: (1) early layers became sensitive to edges, (2) later layers became sensitive to shapes, and (3) the models developed larger receptive fields across layers. The organization of newborn visual systems emerges spontaneously when transformers adapt to a prenatal visual world. This developmental convergence suggests that brains and transformers learn in common ways and follow the same general fitting principles.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 18993
Loading