Abstract: Evaluating disfluency removal in speech requires more than aggregate token-level scores. Traditional word-based metrics such as precision, recall, and F1 (E-Scores) capture overall performance but cannot reveal why models succeed or fail. We introduce Z-Scores, a span-level linguistically-grounded evaluation metric that categorizes system behavior across distinct disfluency types (EDITED, INTJ, PRN). Our deterministic alignment module enables robust mapping between generated text and disfluent transcripts, allowing Z-Scores to expose systematic weaknesses that word-level metrics obscure. By providing category-specific diagnostics, Z-Scores enable researchers to identify model failure modes and design targeted interventions -- such as tailored prompts or data augmentation -- yielding measurable performance improvements. A case study with LLMs shows that Z-Scores uncover challenges with INTJ and PRN disfluencies hidden in aggregate F1, directly informing model refinement strategies.
External IDs:dblp:journals/corr/abs-2509-20319
Loading