Abstract: Recent work increasingly focuses on improving the reasoning capabilities of Multimodal Large Language Models (MLLMs). Among existing methods, Process Reward Models (PRMs) stand out for offering dense, step-wise supervision to guide intermediate reasoning. However, how to effectively integrate PRMs into search strategies remains an open question. In this paper, we introduce PRM-BAS (PRM-Guided Beam Annealing Search), a lightweight approach for PRM-guided reasoning that dynamically adjusts beam size -- starting with a broader search space and gradually narrowing it as contextual information accumulates, thereby balancing performance and efficiency. We further propose a unified framework for data construction and PRM training. Specifically, we construct the PRM-BAS-300k dataset by selecting 300k questions from existing datasets and performing rollouts at each step to estimate the probability of reaching a correct final answer. The PRM is then trained using a combination of value loss for absolute action quality and rank loss for relative action quality. Extensive experiments on challenging multimodal reasoning benchmarks demonstrate that PRM-BAS significantly improves reasoning performance while maintaining low computational cost. Moreover, it generalizes well across different model scales and architectures, showcasing strong robustness and plug-and-play capability.
External IDs:dblp:journals/corr/abs-2504-10222
Loading