Abstract: System Level Synthesis (SLS) enables improved robust MPC formulations by allowing for joint optimization of the nominal trajectory and controller. This paper introduces a tailored algorithm for solving the corresponding disturbance feedback optimization problem. The proposed algorithm builds on a recently proposed joint optimization scheme and iterates between optimizing the controller and the nominal trajectory while converging q-linearly to an optimal solution. We show that the controller optimization can be solved through Riccati recursions leading to a horizon-length, state, and input scalability of $\mathcal{O}(N^2 ( n_x^3 + n_u ^3 ) )$ for each iterate. On a numerical example, the proposed algorithm exhibits computational speedups of order $10$ to $10^3$ compared to general-purpose commercial solvers.
Loading