DeepGate4: Efficient and Effective Representation Learning for Circuit Design at Scale

ICLR 2025 Conference Submission212 Authors

13 Sept 2024 (modified: 25 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: circuit representation learning, graph transformer
Abstract: Circuit representation learning has become pivotal in electronic design automation, enabling critical tasks such as testability analysis, logic reasoning, power estimation, and SAT solving. However, existing models face significant challenges in scaling to large circuits due to limitations like over-squashing in graph neural networks and the quadratic complexity of transformer-based models. To address these issues, we introduce \textbf{DeepGate4}, a scalable and efficient graph transformer specifically designed for large-scale circuits. DeepGate4 incorporates several key innovations: (1) an update strategy tailored for circuit graphs, which reduce memory complexity to sub-linear and is adaptable to any graph transformer; (2) a GAT-based sparse transformer with global and local structural encodings for AIGs; and (3) an inference acceleration CUDA kernel that fully exploit the unique sparsity patterns of AIGs. Our extensive experiments on the ITC99 and EPFL benchmarks show that DeepGate4 significantly surpasses state-of-the-art methods, achieving 15.5\% and 31.1\% performance improvements over the next-best models. Furthermore, the Fused-DeepGate4 variant reduces runtime by 35.1\% and memory usage by 46.8\%, making it highly efficient for large-scale circuit analysis. These results demonstrate the potential of DeepGate4 to handle complex EDA tasks while offering superior scalability and efficiency.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 212
Loading