HVT: A Comprehensive Vision Framework for Learning in Non-Euclidean Space

14 Sept 2024 (modified: 12 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: hyperbolic, topology, vit, transformer, vision, manifold
TL;DR: ViTs can benefit from hyperbolic spaces to preserve location importance and enhance hierarchical structures
Abstract: Data representation in non-Euclidean spaces has proven effective for capturing hierarchical and complex relationships in real-world datasets. Hyperbolic spaces, in particular, provide efficient embeddings for hierarchical structures. This paper introduces the Hyperbolic Vision Transformer (HVT), a novel extension of the Vision Transformer (ViT) that integrates hyperbolic geometry. While traditional ViTs operate in Euclidean space, our method enhances the self-attention mechanism by leveraging hyperbolic distance and Möbius transformations. This enables more effective modeling of hierarchical and relational dependencies in image data. We present rigorous mathematical formulations, showing how hyperbolic geometry can be incorporated into attention layers, feed-forward networks, and optimization. We offer improved performance for image classification using the ImageNet dataset.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 800
Loading